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f Department of Physics, University of Illinois at Chicago, Box 4348, Chicago, IL 60680, 
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$ Departamento de Fisica, CCEN, Universidade Federal da Paraiba, 58.000-Joio Pessoa, 
Paraiba, Brazil 

Received 29 January 1990 

Abstract. We elucidate the utility of a super-realised Wigner-Heisenberg oscillator algebra 
with its inherent built-in direct generalisation of the usual oscillator ladder operators, but 
satisfying a generalised quantum commutation rule, as an effective algebraic tool for the 
easier spectral resolution of general oscillator-related potentials. To illustrate the procedure 
we consider here the full  3D isotropic harmonic oscillator problem and also the problems 
of the ID-iSOtOniC and d-dimensional radial oscillator systems. We also point out the 
intimate connection between the Wigner-Heisenberg algebra and the quantum mechanical 
SUSY algebra associated with these systems. The vastly simplified algebraic treatment 
within the framework of the Wigner-Heisenberg algebra of some other oscillator-related 
potentials like those of the non-relativistic and relativistic Coulomb problems for the 
electron or of certain generalised SUSY oscillator Hamiltonian models of the type of Celka 
and Hussin will be reported separately. 

1. Introduction 

In recent times the one-dimensional ( I D )  quantum mechanical ( Q M )  supersymmetry 
(SUSY) algebra [ l ,  21 has been successfully utilised to achieve a SUSY generalisation 
[3-51 of the familiar harmonic oscillator raising and  lowering operators for SUSY 

shape-invariant potentials. This has paved the way for the evolution of the S U S Y  

method as a powerful algebraic technique for the spectral resolution of a variety of 
such potentials of physical interest [3,4,6-121. While the SUSYQM algebra has thus 
received much operator applications for potential problems, another algebra, the 
general Wigner-Heisenberg ( W H )  oscillator algebra [ 13-19], which already possesses 
an  inbuilt structure which generalises the usual oscillator ladder operators, has not, 
however, in our opinion, received its due  attention in the literature as regards its 
potential for being developed as an effective operator technique for the spectral 
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resolution of oscillator-related potentials. The purpose of the present paper is to bridge 
this gulf. 

Basing our formalism specifically on a super-realised W H  algebra wherein the 
defined ladder operators of the Wigner Hamiltonian system satisfy a generalised 
quantum commutation rule, we develop its utility as an  effective operator technique 
for a simpler spectral resolution of general oscillator-related potentials. To illustrate 
the formalism we consider here simpler types of such potentials only, of the full 3~ 

isotropic harmonic oscillator problem (for a particle of spin 4) and of the in-isotonic 
and  d-dimensional radial oscillator systems. The vastly simplified treatment within 
the framework of the W H  algebra of some other oscillator-related potentials like those 
of the non-relativistic and  relativistic Coulomb problems for the electron and  of certain 
SUSY oscillator Hamiltonian models of the type of Celka and  Hussin [20] which 
generalise the earlier potentials of Ui [21] and  Balantekin [22], will be reported 
separately. One of us ( J J )  will also demonstrate elsewhere how a significant percentage 
of other known SUSY shape-invariant potentials (see [4] for a list of such potentials), 
like the Poschl-Teller I and I 1  potentials, are actually amenable, by virtue of their 
hidden oscillator connections, to treatment using the W H  algebra operator technique 
developed in this paper. 

In  section 2 we start by summarising the essential features of the abstract in W H  

algebra: the defining (anti- )commutation relations involving the Wigner Hamiltonian 
and its mutually adjoint linear ladder operators satisfying a concomitant general 
oscillator quantum rule of Wigner. Obtaining, then, its super-realisation, i.e. a realisa- 
tion in terms of both bosonic and  fermionic coordinates, we bring out the characterisa- 
tion of a two-sector, bosonic with fermion number zero and  fermionic with fermion 
number one, composition of the Wigner Hamiltonian. Though this composition is 
analogous to that existing for a SLSYQM Hamiltonian, the difference n i th  the present 
case is that no energy degeneracy, as will be shown, can exist betneen the sector 
Hamiltonians of the Wigner system except in a unique limiting case when each sector 
Hamiltonian becomes identical to that of the usual oscillator. From the basis of our 
super-realised W H  algebra, we develop in this section the main procedural steps for 
utilising the same as an  operator technique for the complete spectral resolutions of 
the Wigner system as a whole and  then of its sector Hamiltonians. 

I n  section 3 we illustrate the application of our operator method to the case of the 
Hamiltonian of a 3~ isotropic harmonic oscillator for spin 4 embedded in the bosonic 
sector of a corresponding Wigner system, obtaining thereby its full spectral resolution 
with an  ease comparable to that of the usual one-dimensional treatment. 

We establish in section 4 the close connection existing between the 3~ Wigner 
system considered in section 3 and a 3~ ~ C S Y  oscillator system treated recently by Ui 
([21,23]; see also [24]). 

In  section 5 results analogous to those of section 3 and  section 4 are quickly 
extracted for the I D-isotonic and  d-dimensional ( d  f 1 ) radial oscillator systems embed- 
ded in the bosonic sectors of the respective Wigner systems. The particular case of 
one dimension ( d  = 1 )  is shown to be obtained as an exceptional limit case of our 
general analysis as applied to the I D  Wigner isotonic case. As a by-product of our 
analysis in this section, we show also that the recent results of Dongpei [25] on his 
factorised form of the quadratic ladder operators of Camiz er a1 [26] for the I misotonic 
oscillator Hamiltonian [27,28] are simple transcriptions of the properties of the linear 
ladder operators of the associated Wigner isotonic system treated in this section. 

Section 6 contains the  concluding remarks. 
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2. The abstract W H  algebra and its super-realisation 

Almost four decades ago Wigner [ 131 posed an  interesting question as to whether the 
equations of motion determine the quantum mechanical commutation relations and 
found as an  answer a generalised quantum commutation rule for the one-dimensional 
harmonic oscillator. Starting with 

f i=qp+$)=$[a^-,  a ^ ' ] ' = : ( a ^ - a ^ + + a ^ + a ^ - )  (1) 
(we employ th: convention of units such that h = m = w = 1) where the abstract Wigner 
Hamiltonian H is expressed in the symmetrised bilinear form in the mutually adjoint 
abstract operators a ^ =  defined by 

Wigner [13] showed that the Heisenberg equations of motion 
[fi, a^"]- = *a^ :  (3)  

obtained by also combining the requirement that x^ satisfies the equation of motion of 
the classical form, i.e. $+a  = 0, d o  not necessarily entail in the usual quantum rule 
[ a ^ - ,  a^-]_ = 1 -+ [i, p ^ ] -  = i but in a more general one. The form of this general quantum 
rule can be given by [ 14- 181 

( 4 )  

where c is a real constant that is related to the ground-state energy E ' " '  of fi and d 
is an abstract operator, Hermitian and unitary, 

[a^- ,  6-3 = 1 + c d  + [$, $1- = i ( l +  cd) 

A A .  1 A -  

R = R  = R - ' - + R - = l  (5) 
also possessing the properties 

A *  

[ R, a^ ' ]T  = 0 -+ [ R, HI- = 0. 

It follows from (1) and  (4) that 

H = {  * a^ -a^ -+$( l+cd)  
a^-;'-;( 1 + cd) 

Abstractly d is the Klein operator =exp[ix( fi - E,)] [ 15, 161 while in Schrodinger 
coordinate representation, first investigated by Yang [14], k is realised by i P  where 
P is the parity operator [14, 17-19]. 

The basic (anti-)commutation relations (1  1, (3) together with their derived relations 
(4)-(6) will be referred to here as constituting the W H  algebra which is in fact a parabose 
algebra [ 18,29,30] for one degree of freedom. 

To obtain a super-realisation of the W H  algebra, we introduce, in addition to the 
usual bosonic coordinates (x, - id /dx) ,  the fermionic ones b'( = ( b = )  ) that commute 
with the bosonic set and  are represented in terms of the usual Pauli matrices X, 
( i  = 1 ,2 ,3 )  by the combinations 

bK=Z+=; (X,+ i ,X2)=  (b- ) '=O ( 8 a )  

[ b- ,  b'] ,  = 1 (8c) 
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so that the fermion number operator is given by 

From the familiar bosonic coordinate commutation relations and  the algebra of 
Pauli matrices, it follows straight away that the following super-realised operators: 

together with the Wigner Hamiltonian ( l ) ,  i.e. 

fi+ H ( c / 2 ) = i [ a - ( c / 2 ) ,  a ' ( c /2 ) ]+  

d' 1 c  
2 dx-  x 2  2 

- -1 [ -- , + x2+- (- c3)( f z3 - I ) ]  

I 0 
H + ( c / ~ -  1 ) =  H - ( c / ~ )  

d o  indeed satisfy the W H  algebra ladder relations (3): 

[ H ( c / 2 ) ,  a * ( c / 2 ) ] -  = * a = ( c / 2 ) .  (12) 
Hence a'( c / 2 )  and a-(  c / 2 )  are the raising and  lowering operators for H (  c / 2 )  of (1 1) 
and  satisfy, as can be directly checked, the following generalised quantum commutation 
relation: 

[ a - ( c / 2 ) ,  a + ( c / 2 ) ] - =  1+cZ3 .  (13) 

[xl+Zlx,p*+ -iZ, d / d x + ( i c / 2 x ) C , Z 3 ] _ = i ( l + c Z 3 ) .  (14) 

In view of ( 2 ) ,  equation (13) gets transcribed to 

Hence the abstract operator I? of (4) is realised by X3 so that, in view of (9),  

R + C, = (1 - 2 N f )  (15)  

e:= 1 [C,, u ' ( c / ~ ) ] +  = O +  [X3,  H ( c / ~ ) ] -  = O .  (16) 

Since H ( c / 2 )  and C, commute, one can choose simultaneous eigenstates of these 
two operators. This, in fact, has been presumed in writing the two-sector form ( l l c )  
for the Wigner Hamiltonian H ( c / 2 )  given by (1 1 b )  wherein the sector Hamiltonians 
H - ( c / 2  - 1) and  H + ( c / 2  - 1) belong to the subspaces of H ( c / 2 )  characterised, respec- 
tively, by the eigenvalues 1 and  -1 of c3 or, equivalently, with fermion numbers 0 and  
1, respectively, by virtue of (15). For this reason H-( c / 2  - 1) and  H+( c /2  - 1) will be 
designated as the bosonic (i.e. having fermion number 0) and the fermionic (i.e. having 
fermion number 1) sectors, respectively, of the Wigner Hamiltonian H (  c / 2 ) ,  borrowing 
the familiar SUSYQM nomenclature. One should be wary, however, that unlike with 
the S U S Y  case, there can exist no degeneracy, as will be established below, between 
the two-sector Hamiltonians here except in the unique limiting case of c = 0 (see section 
5, equation ( 8 2 ) )  for which case each sector Hamiltonian in (1 1 c)  becomes identical 
to that of the usual oscillator. For this special case the generalised commutation 
relation (13) (or (14)) sharpens to the usual canonical one. 

which satisfies the equations ( 5 ) ,  (6):  
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That the sign of c in H(  c/2),  equations (1 1 a) - (  1 I d ) ,  is purely conventional can 
be justified as follows. Firstly, in the defining expressions ( l o ) ,  ( l l b )  and  (13), the 
operator I;3 and the constant c appear only in the product form cC,. Hence a 
simultaneous change of the signs of c and  C3 renders the Wigner Hamiltonian H (  c/2) = 
H (  c/2, I;,) invariant, i.e. 

H(c /2 ,  C,) = H(-c/2,  -I;,). (17a) 

From (17a) and the equality C,C31;, = -C,, it then follows that 

H (  - ~ / 2 )  = H( - ~ / 2 ,  C,) = C ,  H ( - c / ~ ,  -C3)EI 

= C l  H( c/2, C7)I;, = C ,  H( c /2 )Z1 .  (176) 

The above equation establishes that the two theories related with just the change of 
sign of c are unitarily connected with each other. (See [18] for a discussion on this 
matter in the context of a purely coordinate description of the W H  algebra.) In view 
of (17b) we shall assume hereinafter, without loss of generality, that c is positive, i.e. 

c = IC1 > 0. ( 1 7 4  

(The limiting case of c = 0 will be discussed separately in section 5.) 
Now, to determine the ground state $i0'(c/2),  a two-component entity, of H(c /2 ) ,  

H( c/2)$"'( c /2j  = E'"( c/2)Gi0'( c/2) *""( c/2) = 

with E"'(c/Z) being the ground-state energy, we choose for H ( c / 2 )  the convenient 
from (7a )  which, in view of ( lo ) ,  (11) and (15), turns into 

H ( c / 2 )  = a ' ( c / 2 ) a - ( c / 2 ) + ~ ( 1 + c C 3 ) .  (19) 

From the positive semi-definite form ( l l a )  of H(c /2 )  and  the energy step-up and  
step-down relations (12), it follows that $'"( c/2) can be uniquely determined from 
(18) and (19) invoking the annihilation condition 

a-(c/2)$[" '(c/2) = 0. (20) 

Expressing a = ( c / 2 )  given by (10) in the following respective factorised forms: 

the use of (21bj in (20) leads to 

Equation (22) then results in 

As c has been assumed positive, only +j0'(c/2) of (23) meets the physical requirement 
of vanishing at the origin and  $\:'(c/2), which does not stand this test, is discarded 
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by setting c2 = 0 in (23). Hence, the normalisable ground-state wavefunction is given, 
u p  to a normalisation constant, by 

which has even Z3-parity, i.e. 

x 3 $ ' 0 ) ( c / 2 )  = 4"" (c /2 ) .  ( 2 5 )  
From (18)-(20), (24 )  and ( 2 5 ) ,  it follows that the ground-state energy is given by 

€ ' O ' (  c/2) = $( 1 + c)  > f c > o .  (26) 

At this stage an independent verification of the existence or not of a zero ground-state 
energy for H (  c/2) suggested by its positive semi-definite form may be in order. Such 
a state has to be annihilated both by a - ( c / 2 )  and a ' ( c / 2 )  and the latter condition 
leads to unnormalisable $io' and $ \ ? I  in view of (21a) ,  thus causing the state in question 
to vanish identically. However, there exists a normalisable state of lowest energy 
E'"'( c/2) = 1, which is annihilated by a- (  c / 2 )  but not by the energy step-up operator 
a+(c /2) .  A little further analysis reveals that the theory then becomes identical to the 
description with c = 1 (or  equivalently related to c = -1 in view of (17b)). For a similar 
conclusion from matrix representations of the parabose algebra, see Sharma er a1 [30]. 

Now, from the role of a + ( c / 2 )  as the energy step-up operator (the upper sign 
choice in equation (12)) the complete energy spectrum of H ( c / 2 )  is given by 

E ' " ' ( c / ~ ) = E ' ' ' + ~  = 4 ( 1 + c ) + n  n = 0 , 1 , 2  , . . . .  ( 2 7 )  
The excited-state energy eigenfunctions * ' " I (  c / 2 )  are readily given by the step-up 
operation with a'( c/2) starting with CL'*'( c/2):  

From the equalities 

and  the fact that Z, can be factored out in the expression for a'(c/2) obtained by 
choosing the upper signs in ( lo) ,  it follows that the excited-state wavefunctions given 
by (28) have even (odd) &-parity for even (odd) quanta n = 2 m (  n = 2m + l) ,  m = 
0 , 1 , 2  , . . . ,  i.e. 

The component structures of the excited-state eigenfunctions of H (  c / 2 )  given by 
(30) together with the two diagonal block structure of H ( c / 2 )  given by ( l l c )  and  the 
energy spectrum (27) for H ( c / 2 )  lead to the immediate obtaining of the mth excited- 
state eigenfunctions $?"(c/2- 1) and +Lm'(c/2 - l ) ,  respectively, of the bosonic and 
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fermionic sector Hamiltonians H - (  c/2 - 1) and H,(c/2 - 1) and of the complete energy 
spectrum for these respective Hamiltonians, as the ones given by 

4L"(C/2- 1) = 4i2mi(C/2) ( 3 1 ~ )  

ELm'( ~ / 2  - 1) 

= ~ " " " ' ( c / 2 )  = ~ ~ ( " ( c / 2 ) + 2 m +  1 

= $ ( I  + c ) + 2 m  + 1 m = 0 , 1 , 2  , . . . .  ( 3 2 ~ )  

We now demonstrate how equations (31a),  (31b) and (32u), (32b) do in fact lead 
to the eigensolutions of H _ ( c / 2  - 1) and H,(c/2 - l ) ,  respectively, in terms of the 
generalised Laguerre polynomials defined ([ 17,311) by 

d" '. --( d p  
1 

p = x- O<p<cO (33) L Y ' ( p )  = ; p  exp(p) T e x p ( - p )  

with L',O'(p) = L, (p )  being the ordinary Laguerre polynomials. 

with (24) and the factorised expression (21a) for a'(c/2) lead to 
Considering first the case of even quanta ( n  = 2 m ) ,  equations (31a),  (31b) together 

After eliminating the fermion spinorial part in (34) one obtains 

4'"'(c/2 - 1) 

= ~ i 2 " " ( c / 2 ) ~ x " '  exp( --$x2) 

exp(")(x2)-'' 2 - 1 / 2 &  dx' ( X Z ) l i i 2 + , , 2 j ~  dx2 erpi-x'))m] (35) 

where use has been made of the identity d /dx  = 2x d/dx2. 
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For m = 0 (1) it follows trivially that the square bracketed expression in (35) equals 
L b ' / z - l / 2 i (  z x 1, apart from a proportionality factor) in view of (33). 
The demonstration that for arbitrary integer m the square bracketed expression in (35) 
is indeed proportional to Lk 2-1 '2 ' (x2 )  defined as in (33) proceeds through the familiar 
induction method which requires, as can be directly checked, the proving of the 
following equality: 

) = * (L\< 2 - 1  "( 2 

= -[ ( $ ) m ( x y - l  2 )  exp(-x')](x')m+l 

This equality can in fact be established in a straightforward though tedious manner, 
the details of which we omit here. Hence equation (35) furnishes 

( ~ ' _ " ' ( c / 2 - 1 ) =  ( L ~ ~ " ' ( c / ~ ) c c x '  e x p ( - ~ x z ) L ~ " - " "  (X'). (37) 

Considering now the case of odd quanta ( n  = 2 m + l ) ,  defined in (32a) ,  (32b),  a 
repetition of the above procedure results in 

+!+m'(c/2- 1)  

- - 4,ifm+l)(c/2)K ? + I 1  exp( -4x') 

exp(-x') - ( '  2-1  2 )  (x2)l' Z+l/Z! 
dx' 

exp( - iX2))Lk 2 + I / 2 y X 2 )  ( 3 8 ~ )  = x ( <  2 + l  I 

where in passing from (38a )  to (386) use has been made of the identity 

The above analysis constitutes our affirmed procedural development of a super- 
realised WH algebra as a potentially effective operator technique for applications for 
obtaining spectral resolution of oscillator-related potentials some of which will be 
discussed in the ensuing sections. 

Before proceeding further, an explanation may be in order as regards the role of 
the parity operator P, P + ( x )  = +(-x) in the theory presented here. Though P does 
commute with H ( c / 2 ) ,  H-( c / 2  - 1) and H+(c /2  - l ) ,  the peculiarity that their respective 
eigenfunctions 1) '~ ' (c /2) ,  (L!"(c/2- 1 )  and (L~"I(c/2- 1) ((30)-(32), (37) and ( 3 8 ~ ) )  
are not automatically eigenfunctions of P for arbitrary c > O  even in this one- 
dimensional situation is due to the singular nature of the centrifugal terms in these 
Hamiltonians, which forbid transitions between the sectors x > 0 and x < 0. This makes 
possible, for any c > 0, even or odd extensions to x < 0 of the solutions for x > 0 without 
any further condition of continuity at the singular origin that has just a vanishing 
wavefunction. Hence the regions x>O and x<O behave independent of each other 
for any c > 0. The energy spectra given by (271, (31 c) and (32c) are obviously unaffected 
by any parity prescription. 
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3. The 3~ isotropic spin-; oscillator Hamiltonian in the bosonic sector of a 
Wigner system 

The super-realisation of the ladder operators (10)  and the consequent form of the 
Wigner Hamiltonian of ( 1  1 )  wherein the potential terms, V_(  c / 2  - 1 )  and V + ( c / 2  - l ) ,  
of the sector Hamiltonians differ only by a change of the parameter, i.e. V + ( c / 2  - 1 )  = 
V - ( c / 2 ) ,  guide the construction as well of a 3~ Wigner Hamiltonian H ( a .  L +  1 )  with 
its bosonic sector taken as the Hamiltonian 

(40)  
for a non-relativistic 3~ isotropic oscillator with spin-; represented here by :a. With 
the use of the following familiar spin-; equalities [32,33]:  

1 a i  
r a r  r - p = U#, + - U,( U * L + 1 )  p r  = -i( - + -) = ( -i :) r = p :  

1 
I 

U? =- U. r 
r 

(use of which has been made in writing the form (40 )  for H - ( a .  L ) )  and invoking 
analogy with ( 1 1 )  and ( l o ) ,  one simply makes the replacements in these of 

af= 1 [ (7,) a * L + 1 I+ = 0 L " a .  L ( a .  L+1) 

(42 )  

along with the constant c / 2  substituted in its place by the operator ( a .  L + 1 )  that 
commutes with every quantity occurring in (40 ) ,  to obtain the 3~ fermionic sector 
Hamiltonian 

H + ( a . L ) = H - ( a * L + l )  

so that the 3~ Wigner Hamiltonian is then defined by 

= i [ u - ( a .  L + l ) ,  u ' ( a . L + l ) ] , .  

In (44 )  the operators u z ( a .  L + l )  defined by 

= [ a ' ( a .  L + 1 ) ]  

are in fact the ladder operators for H (  a L +  1) o f  (44 ) :  

[ H ( a  L +  l ) ,  U ' ( a  L +  l ) ] -  = * u - ( u  * L +  1 )  

and satisfy the commutation relation 

[ a ' ( a . L + l ) , u - ( a . L + l ) ] _ =  1 + 2 ( a * L + l ) C , .  

(44 )  
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Note that 

[I3, a ' ( a  - L +  l ) ] +  = O +  [&, H ( a  L +  1)3- = 0. (47 b 1 
Equations (44)-(47) in fact define a 3~ W H  algebra. Since the operator ( a -  L +  1) 

commutes with all the basic elements H (  U L )  and a = ( u  - L +  1) of this algebra, it 
can be simply replaced by its eigenvalues * ( I  + l ) ,  1 = 0, 1,2,  . . . , while acting on its 
respective eigenspaces defined by the familiar spin spherical harmonics y*( 8, 4 ) :  
( a . ~ + i ) y ~ e ,  4 ) =  * t ( i + i ) Y = ( e , d )  (48a 1 
Y + ( 4  4 )  =Y'; , ,=/- ;"(fA 4 )  Y-(e, 4 )  = ~ ~ + ~ ~ . , = ~ ~ ~ ~ ~ - ~ . ~ , ( e ,  41. (48b) 

On these subspaces the 3~ W H  algebra of (44)-(47) is reduced to the corresponding 
I D  form of equations (10)-(13) with ( a . L + 1 ) + * ( 1 + 1 ) = c / 2 .  

Considering first the case of c/2 = I + 1 31, one proceeds through the algebraic 
technique developed through equations ( 18)-( 39) and simply translates the contents 
of all these equations to the present case with the only modifications given by (42) so 
as to obtain the complete resolution of the energy spectrum and the corresponding 
(radial) eigenfunctions, indicated below in the now familiar notation, of the I D  Wigner 
Hamiltonian H (  1 + 1) and its sector Hamiltonians H-( I )  and HT( I ) :  

E ' " ' ( I +  1) = E ' " ' ( l +  1 ) +  n = ( I + : ) +  n n = 0 , 1 , 2 ,  . . .  (49) 

R\"-'" '(l+ 1) = R?"'(I) = R . , ( r ) a r '  e x p ( - ~ r ~ ) ~ ~ , ~ ' , , ~ ~ ' , ~ - / ' ( r ~ )  ( 5 1 ~ )  

E:"(I)= ~ ' " ' ( 1 + 1 ) = ( 1 + ; ) + 2 m  m = 0 , 1 , 2 ,  . . .  ( 5 l b )  

E , ,  = E ! Y ) ( / )  = ;+ N ( 5 1 ~ )  

R:;=2m+1J ( I  + 1) = R:"(/) = R I (52a) 

E\"(/) = E""'"(I+ 1) = ( I + 3 ) + 2 m +  1 m = 0 , 1 , 2 ,  . . .  (526) 

E . v i + l  = E L m ' ( / )  =;+ N ( 5 2 ~ )  

N = I ,  1 + 2, . . . 
( r )  = r '+ '  exp( -+r ')Li '+3 m = i l  zi i  \-/-ll(r ') 

N = l + l ,  1 + 3 , .  . . 
where N is the principal quantum number. 

form 
For the case c / 2 =  - ( I + l ) ,  the I D  Wigner Hamiltonian H [ - ( l + l ) ]  assumes the 

(see also equation (176)). While the eigenvalues of H [ - ( I +  1)3 are thus the same as 
those of H ( I + l )  given by (49), the effect of the unitary transformation (53) with X I  
on the eigenfunctions (50) of H ( I +  1) is just to flip, by virtue of (29), the &-parities 
of the corresponding even and odd quanta eigenfunctions of H [ - ( 1 +  111. Note that 
the ground state of H [ - ( l +  111 has odd &-parity. Taking this fact into account, the 
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complete set of energy eigenfunctions of H _ (  a L) of (40), which are also simultaneous 
eigenfunctions of ( a .  L +  l ) ,  are readily regained by affixing the spin-spherical har- 
monics y = (  8, 4 )  of (48) suitably to the radial solutions obtained here, which turn out 
to be the known solutions in the standard forms R%,(  r)y+( 8, 4 )  and R , + , ( r ) y - ( 8 ,  d).  

The above analysis completes our assertion as to how the W H  algebra operator 
technique developed in section 2 can be effectively utilised for the complete spectral 
resolution of the spectral problem for a 3~ isotropic harmonic oscillator with spin i. 

4. The Wigner and SUSY systems associated with a 3~ isotropic oscillator with spin f 

In this section we demonstrate the connection between the 3~ Wigner Hamiltonian 
H ( a .  L + 1 )  of equation (44) and a 3~ SLSY isotropic harmonic oscillator for spin 
recently discussed by Ui [21] with its Hamiltonian HL given by 

(54) 

(wherein, for convenience, we have reversed the bosonic and  fermionic sectors as 
considered by Ui and have set his parameter w to unity). 

Transforming HL, by the unitary operator 

we obtain, in view of (40)-(44), the transformed Hamiltonian Hss as given by 

H S S  = UHc,  U = H (  a .  L +  1 )  -$I,[ 1 + 2 ( a .  L +  l)C,]. ( 5 6 ~ )  

Making use in the above of the symmetrised bilinear form (44) for H ( a -  L +  1)  in 
terms of the Wigner system ladder operators a ' ( a .  L +  1) of equation (45) and  
identifying the square bracketed expression on the RHS of (56a)  with the commutator 
(47a )  of these ladder operators, Hss  of (56a)  can be recast into the form 

~ , , = $ [ a - ( a .  L + I ) ,  a ' ( a .  L +  ~ ) ] , - $ X , [ a - ( a *  L +  I ) ,  a + ( a .  L +  I)].. (566) 

= [ Q - ,  Q + I + .  ( 5 6 ~ )  

With C, anti-commuting with a z ( a *  L +  l ) ,  defined in (47b), the mutually adjoint 
charge operators Q= of (56c) obtain from (566) the following respective expressions 
in terms of the Wigner system ladder operators: 

L + 1 ) Q-- = $( 1 - c 3 1 a - ( a Q + =  QI = J ( l + Z . , ) a + ( a * L + l )  i57a)  

(Q-) '=(Q+)?=O.  (576) 

The anti-commutation relations (56c) and (576) define the SUSYQM algebra leading to 
the supersymmetry of H s s ,  i.e. 

[ Q - ,  Hssl- = o .  (58) 

Equations (54)-(58) provide the intimate connection existing between the 3~ SUSY 

isotropic harmonic oscillator of spin (i.e. equation (54)) of Ui [21] and the correspond- 
ing Wigner system Hamiltonian H (  a - L +  1)  discussed in the last section. 
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In fact (57a) and (56) can be written in the following suggestive forms usually 
employed in SUSYQM discussions: 

"1 0 
Q- = X-A-(U- L +  1) = [ A - ( o . L + l )  0 

A'(u. L + l ) A - ( a . L + l )  0 
0 A - ( U * L + ~ ) A + ( U . L + I )  Hss = 

where Zz are as defined in (8) and 

That SUSY is unbroken in this model for subspaces of y+ follows from the existence 
of normalisable and non-singular (at the origin) zero-energy solutions pertaining to 
this case only, i.e. U * L + 1 - 1  + 1 

4" = [ ;;] 
that are annihilated by both Q+ and Q-.  These annihilation conditions respectively 
lead by virtue of (59a),  (596) and (59d)  to 

(606) Q+& = 0 + 4B arbitrary, d F  = 0 

Q-& = 0 + 4B a I' exp( - :r2)y+, 4F arbitrary 

and hence together to 

consistent with the conclusions of Ui [21] for his model based on (54). 

5. The 1 D-isotonic and &dimensional radial oscillator systems 

The i ~ i s o t o n i c  oscillator is by definition the usual oscillator with a centripetal barrier 
[27,28] and its Hamiltonian is just given by that of H-(c/2 - 1) defined in ( l l d ) .  The 
Wigner isotonic system incorporating H _ ( c / 2  - 1) in its bosonic sector is given by 
(1 IC).  Assuming c > 0 without loss of generality as justified by ( 1 7 4 ,  the operator 
technique of section 2 using the W H  algebra is trivially applied to the present case to 
obtain the eigenfunctions ILY"(c/2- 1 )  as given by (37) and the energy spectrum as 
given by ( 3 1 ~ ) .  The same observations as regards the role of parity as discussed in 
section 2 apply here as well. 

Though quadratic ladder operators [26,28] and their factorised expressions [25] 
for the i ~ i s o t o n i c  oscillator have been discussed in the literature, the fact that they 
may be derived from their connection with the linear ladder operators of the associated 
Wigner system, however, has, to our knowledge, not yet been pointed out. We shall 
now demonstrate how the linear ladder operators (10) satisfying the Wigner ladder 
relations (12) lead to the obtaining of the quadratic ladder operators for the sector 
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Hamiltonians H-(c/2 - 1) and H+(c/2 - 1) = H-(c/2),  that raise the respective energy 
quanta of these Hamiltonians by two units. 

Setting c/2 = I +  1(>0)  for convenience of later comparison with Dongpei's [25] 
results, we have from (12) the Wigner ladder relations 

[ H(I+ l ) ,  a ' ( / +  1)]- = * a * ( / +  1) ( 6 1 ~ )  

where 

[ H+(I) = O I  H-(I+ 1) 
H ( I +  1) = 

d' 
dx' 

0 '(- 2 

and 

d (1+1) 
u * ( I + 1 ) = -  *I: -T- A (  ' d x  x 

From (61a) it follows that 

[ H ( I +  11, ( a * (  I +  1))*]- = *2(a'( I +  1)l2.  

Multiplying both sides of (62) from left by the projection operators $( 1 * X3), we obtain 

f ( l + x , ) [ ~ ( I +  11, ( a = ( / +  1)12]_ = r 2 f ( 1  + X . , ) ( U = ( I +  I ) )?  

f( 1 -C3)[H(I+ l ) ,  ( U ' ( / +  1)):]- = *2;( 1 - X ? ) ( U = (  I +  l ) ) ? .  

(63) 

(64) 

Noting the commutativity of $ ( l  *E3) with both H ( I +  1) and ( U * ( / +  1))> and 

(65a)  

(656) 

making use of the identities 

f (  1 +x,,)H(I+ 1) = f( 1 +x,)H-( I )  

$( 1 - X 3 ) H (  I + 1) = f (  1 - C 3 )  H,( I )  = f (  1 - I:3) H-( I + 1) 

that follow from (61b), we obtain after elimination of the spinorial parts in (63) and 
(64) the following relations: 

[ H-(I), A'(/+ l )A+(-(I+ 1))]- = 2A'(I+ 1)A-( - ( I +  1))  

[H-(I), A-(-( /+ l ) ) A - ( I +  1)]-=-2A-(-(I+ 1 ) )A- ( I+  1) 

[ H-(  I +  l ) ,  A+( -( I +  l))A'( I +  1)]- = 2A'( - (  I + l))A'( I + 1) 

(66a) 

(666) 

(67a)  

[ H - ( I +  l ) ,  A-(I+l)A-(-(I+l))]-=-2A-(I+l)A-(-(I+l)). (67b) 

In the above the operators A'(*(/+ 1))  and A-(*(/+ 1)) are, respectively, defined by 

=[A-(*(/+ l))] '  

= [ A ' ( * ( [ +  l))]'. 
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Changing I +  1 + I in (67), one also obtains 

[H-(I) ,  A + ( - / ) A ~ ( / ) ] - = 2 A ' ( - I ) A ' ( I )  (@a 1 
[H-( I), A-( / ) A - (  - / ) I -  = -2A-( / )A-(- / ) .  (696) 

From (66a)  and (69a)  it is readily identified that the quadratic operators 
A'( I +  1)A+( -( / + 1) )  and A'( - /)A-( /)  are both step-up operators by two units for 
the energy spectrum of H_( /). These quadratic operators are indeed identical to each 
other, as can be directly checked in view of ( 6 8 ~ ) :  

A+( - / )A+( / )  = A'(/+ l )A- ( - ( l+  1)). (70) 
Observing that (66b), (67b) and (69b) are just the Hermitian adjoint equations respec- 
tively to (66a) ,  (67a) and ( 6 9 ~ 1 ,  it follows that the quadratic step-down operators 

(71) 
(that are Hermitian adjoints of the step-up operators in (70)) in fact lower by two 
units the energy spectrum of H-(I) .  The quadratic ladder operators (70), (71) for the 
spectrum of H_( I )  in fact coincide with those obtained recently by Dongpei [25] from 
factorisation considerations [34]. In fact Dongpei's b operators are the same as our 
A operators here (apart from an overall sign change) and his results [25] on the /-shift 
properties of these operators can be seen below to result from the Wigner system 
ladder relations (61a).  In  fact multiplying both sides of (61a) from the left by the 
projection operators $( 1 *X3), one obtains 

A-( / )A-(- / )  = A-( - ( /+  1))A-(  I +  1 )  

i ( l= tX3) [H( /+ l ) ,  a * ( / + l ) ] -  = *!( l*X3)a*(/+l) .  
Making use of (65) in the above and then eliminating the spinor parts leads to the 
following set of /-shift relations: 

H-( /)A'( I + 1) - A'( / + 1 ) H-( I + 1) = A+( / + 1) 

H - ( I +  1)A'( -( I +  1))  -A'( -( I +  l ) ) H - (  /) = A*(-( / +  1))  
A-(-( I +  l ) ) H - ( / +  1) - H-(/)A-(-(I+ 1))  = A-(-( I +  1) )  

A-( I +  l ) H - (  I )  - H-( I +  1)A-( I + 1) = A ( I +  1). 

(720) 

(726) 
( 7 2 ~ )  

(72d 1 
Turning now to the construction of the I D  S U S Y  isotonic system with unbroken 

SUSY,  one just invokes analogy with (56) and (57) and effects the substitution in these 
of U L +  1 + I +  1 (now any positive integer), r + x and alar+ l l r  + d/dx  so as to obtain 

(73a)  
= + [ a  - ( / +  I ) ,  a ' ( / +  1)]+ - $ , [ a - ( / +  l ) ,  a'( I +  1)]- (73b) 

=LO-, Q-1- (73c) 

(73d) 

(73e) 

= [ A T ( I + l ~ - ( I + l l  

(74a)  

(746) 

Hs,= H ( I +  1) -+13[1+2(/+ 1)X,] 

A-( I +  l ) A + ( / +  1) O I  
(Q-)' = (Q+)' = 0 

Q- =$( l  - Z ? ) K (  I +  1) = L A - ( / +  1 )  

Q+ = (0-1 =i ( l  + Z 3 ) a + (  I +  1) = I T A + ( / +  1) 

with 

In (74), Xz are defined as in (8) and A * ( I + l )  as in (68). 
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Now consider d-dimensional ( d  # 1 )  radial oscillator Hamiltonians in the physical 
representation R (  r )  

+ r 2 )  H ! K ( r )  = E - R - ( r ) .  
-d2 d - 1  d kd( ld+d-2)  -+ 

r2 ( 7 5 )  

The observation that H-(  1 )  of (61 b )  with x replaced by r (0 < r < CO) coincides with 
the transformed forms [35]  H ?  in the x representation 

( 7 6 )  
for angular momentum ld  = l - $ ( d  - 3 ) ,  ld  = 0 , 1 , 2 , .  . . , of the radial oscillator leads to 
the analogous defining of the associated Wigner system Hamiltonian by H X ( c / 2 )  = 
H X ( l + l ) =  H x ( l d + f ( d - l ) ) ,  i.e. 

~5 = r c l / 2 ) i d - l ) ~ R  ( l / 2 ) i l - d l  *,(,.) = r ( 1 / 2 1 ( d - l )  R-(r)  - r  

H X ( &  + $ ( d  - 1 ) )  

3 ( 7 7 a )  
= [ H ? ( l d + $ ( d - 3 ) )  0 

0 H :  ( ld + $( d - 3 ) ) = H? ( + $( d - 1 ) ) 

= [a,( Id + $( d - I ) ) ,  a;( ld + +( d - I ) ) ] +  ( 7 7 b )  
1 
r H?( l d  +$(d  - 3 ) )  r 2 + ,  [ + $ ( d  -3 ) ] [ ld  +$(d  - I ) ]  

[ HX ( Id + f( d - 1 )), a,'( ld + $( d - I ) ) ] -  = * a,' ( ld + f (  d - 1 ) ) .  ( 7 7 d )  
Though the X-representation Wigner ladder operators a:( ld + $ ( d  - 1 ) )  are not 

mutually adjoint and hence H X ( l d  + $ ( d  - 1 ) )  is not Hermitian, the similarity trans- 
formed operators 
a:(c /2  = ld + $ ( d  - 1 ) )  = r"'2"'-d'a,'(c/2 = ld + $ ( d  - 1) ) r ( "2 ) 'd - ' )  ( 7 8 a )  

( 7 8 6 )  

( 7 9 a )  

= [ a , ( l d + $ ( d - l ) ) ,  a ; ( l d + $ ( d - l ) ) ] +  ( 7 9 6 )  

in the physical R-representation are indeed mutually adjoint: 

a;( c / 2  = ld + $( d - 1 ) )  = [a: (  c / 2  = ld + +( d - I))]' 

H R ( l d  + $ ( d  - 1 ) )  = r ( 1 / 2 ) ( l - d )  HX(Id + $ ( d  - 1 ) ) r ( 1 / 2 ' ( d - 1 )  
and hence the Wigner Hamiltonian in this physical representation 

is Hermitian. Noting this fact and also that c = 2(1d + $ ( d  - 1 ) )  > 0 with d # 1 as is 
assumed here, the algebraic technique of section 2 may be applied immediately to the 
present case to obtain first the energy eigenfunctions ,y'"'(/d + t ( d  - 3 ) )  of HX(1, + 
f (d  - 3 ) )  as given by ( 3 7 )  with the energy spectrum + $ ( d  - 3 ) )  as given by 
(31c )  with the due substitution of c / 2  in these by Id +f(d - 1 ) .  The physical representa- 
tion spectral resolution follows the similarity transformation in ( 7 9 a )  to yield 

RIm'(& +$(d  - 3 ) ;  r )  
- , . c l / 2 ) ( I - d l  i m )  - X -  (&  ++(d - 3 ) ;  r )  

(goal  
( I  + i 1 / 2 ) d - I )  

= R NId(r) 0~ r'd exp( - t r 2 ) ~ (  P,~) (  N - l d  ) =  ,,,( r2 )  
E!(m'(ld +$(d  - 3 ) )  

= ( E - )  N / ~  = E'''( Id +f (d  - 1 ) )  + 2 m  = Id +$(d  - 1 )  +++2m 

= 1, +fd  + 2 m  m = 0 , 1 , 2 ,  . . .  ( 8 0 6 )  
= N +$d (80c )  N = l d ,  ld + 2, . . . 

where N is the principal quantum number. 
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The construction of the SUSY system from the Wigner system in the x representation 
for the d-dimensional radial oscillator ( d  # 1) follows the same lines as in equations 
(73) and (74) for the isotonic case by effecting the substitution of x -+ r and c/2 = 1 + 1 + 
ld + i ( d  - l ) ,  but is not repeated here. 

The usual one-dimensional case is realised from (11) for the special choice of 
c /2  = 0. For this unique case the generalised commutation relations (13) and (14) are 
sharpened to the usual canonical ones. Retaining the super-realisations (10) for the 
ladder operators with c/2 = 0, i.e. 

the Wigner Hamiltonian defined in (1 1) for this case becomes 

1 0  H ( 0 )  = H-( - l )  0 
H+(-1) 0 = H-(O) ] = i ( S + x 2 ) [ ,  i]. (82) 

This form is different from those treated earlier with c/2 > 0 for which cases the bosonic 
and fermionic sector Hamiltonians could not be identical (see (1 1 c) and (1 1 d ) )  whereas 
for the present case, equation (82), the sector Hamiltonians indeed become identical 
to the usual one-dimensional Hamiltonians and hence possess identical energy spectra. 
Thus, every level (including the ground state) of H ( 0 )  is doubly degenerate, the 
degeneracy being labelled by the both admissible values *l of &-parity, i.e. by the 
eigenvalues i of X 3 .  (Equivalently, one could label the degeneracy by the eigenvalues 
ztl of Z, or E2 which also commute with H(O) ,  but we adopt the &-parity convention.) 
Starting from the ground state of H ( 0 )  with even &-parity (the other linearly indepen- 
dent ground state has odd &-parity), the repeated application of the operator a'(0) 
to this state will effect the construction of the excited states of H ( 0 )  with alternating 
&-parity in view of (29). Hence, we obtain by applying the same algebraic method 
of section 2 to the present case of c/2 = 0, the following expressions for the Nth  excited 
states with specific &-parities and the corresponding energy levels of H ( 0 ) :  

(83b) 
E ( N = 2 m 1  I \ ' = 2 m )  (0) = E :  (-1) = ;+2m m = 0 ,  1 , 2 , .  . . 

(-1) = f + 2 m +  1 m = 0 , 1 , 2  , . . . .  ( 8 3 d )  
Noting that E, commutes with H(O) ,  the other set of states linearly independent to 
those in (83a) and (83c) with opposite &-parities can obviously be obtained by X I  
operation on the states in (83a) and (83c). Equations (83) verify with the well known 
results for the one-dimensional case, wherein however, as a by-product of our algebraic 
method, we have rederived the proportionalities (83a)  and (83c) existing [3 11 between 
the Hermite and the generalised Laguerre polynomials involved in these equations. 

E ( N = 2 m +  1 J (o) = E ( ; Y = 2 m + l )  
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6. Conclusions 

In this paper we have pointed out the efficacy of a super-realised WH algebra as an  
effective operator tool for easier spectral resolution of general oscillator Hamiltonians 
like those of the 3~ isotropic, 1 D-isotonic and  d-dimensional radial oscillator systems. 
In our method these Hamiltonians were incorporated in the bosonic sectors of the 
corresponding Wigner Hamiltonian and their complete energy spectrum and eigenfunc- 
tions obtained by the WH algebra inspired generalisation in section 2 of the ladder 
operator method for the usual one-dimensional oscillator. Such a direct algebraic 
method elucidated in this paper for these systems has not, in our opinion, been reported 
so far in the literature and  we believe it to be a welcome addition to the existing 
susu-inspired operator method ([3-51) for SUSY shape-invariant potentials of which 
the oscillator potentials treated here also form members [4]. The procedure detailed 
here proves highly profitable for simpler algebraic treatment, as we shall show in 
subsequent publications, of other quantum mechanical systems with underlying oscil- 
lator connections like for example those of a non-relativistic or relativistic electron in 
a Coulomb potential o r  of certain 3~ SUSY oscillator models of the type of Celka and 
Hussin [20]. Also one of the authors (JJ) will demonstrate elsewhere how a significant 
percentage of other known SUSY shape-invariant potentials (see [4] for a list of such 
potentials) d o  possess hidden connections with a Wigner oscillator and hence are 
amenable to simpler algebraic treatment on the basis of the operator technique of this 
paper. 
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